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Municipal wastewater treatment
processes for sustainable development

Suthida Theepharaksapan', Suda Ittisupornrat’,
Kanjana Ketbubpha®, Songkeart Phattarapattamawong” and
Jarungwit Boonnorat’

"Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot
University, Nakhon Nayok, Thailand 2Environmental Research and Training Center (ERTC),
Department of Environmental Quality Promotion (DEQP), Technopolis, Bangkok, Thailand
*Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of
Technology Thanyaburi (RMUTT), Pathum Thani, Thailand “Department of Environmental
Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi
(KMUTT), Bangkok, Thailand

22.1 Municipal wastewater

Municipal wastewater is wastewater from households or a mixture of wastewater from
households and industry (Malik et al., 2015). The pollutants present in wastewater include
organic compounds, nutrients, and micropollutants from plastics and pharmaceuticals. As
a result, wastewater, if improperly treated, poses a serious threat to freshwater aquifers
and human health. In 2015 the United Nations (UN) announced a collection of 17 inter-
linked microalgae-based nutrient recovery and coproducts.,, which are a blueprint to
achieve a better and more sustainable future for all and are intended to be achieved by the
year 2030. The UN'’s sustainable development goal (SDG) 6 is concerned with clean water
and sanitation for all. Specifically, the aim of SDG 6 is to ensure availability and sustain-
able management of water and sanitation for all.

Since micropollutants in municipal wastewater can pose a serious risk to human
health and the environment, governments around the world have increasingly attached
greater importance to the issue (Berendonk et al., 2015, WHO, 2015, 2017). The micro-
pollutants commonly present in municipal wastewater include bisphenol A, phthalates,
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pharmaceuticals, aromatic compounds, and nonmetabolized compounds in human waste
(Gurung, Ncibi, & Sillanpaa, 2019; Lei et al., 2018; M. et al., 2020; Rizzo et al., 2013;
Wang & Wang, 2018, 2019).

The World Health Organization and the US Environmental Protection Agency classify
phenols and phthalates as endocrine disrupting chemicals because of their harmful effects
on the reproductive system, neural development, and immune system (Boonnorat et al.,
2018). The micropollutants in municipal wastewater come from various sources, including
households, hospitals, crop plantations, and industry (Clara et al., 2005). Several micropol-
lutants are degradation-resistant compounds, rendering conventional biological wastewa-
ter treatment systems, for example, activated sludge (AS), less effective in removing the
compounds, when compared with membrane bioreactor (Gurung et al., 2019; Kanyatrakul
et al., 2020; M. et al., 2020).

In view of the UN’s SDG 6 on clean water and sanitation for all, this article investigates
the current wastewater treatment technology for removal of micropollutants in municipal
wastewater and water reclamation and reuse. The aim of wastewater reclamation and
reuse is to ensure availability and sustainable management of water and sanitation for all.

22.2 Membrane bioreactor for removal of micropollutants in municipal
wastewater and technology development

Membrane bioreactor (MBR) is an advanced wastewater treatment technology that inte-
grates membrane filtration with AS technology. The treatment performance is dependent
on classes of membrane filtration, and there are four classes of membrane filtration: micro-
filtration, ultrafiltration, nanofiltration, and reverse osmosis.

Microfiltration is the membrane class of largest pore size. Microfiltration membranes
can filter suspended particles of 0.1—10 pm in diameter. Ultrafiltration membranes can fil-
ter macromolecules with molecular weight of 1000—5000,000 Da. Nanofiltration mem-
branes can filter molecules with 100—1000 Da in molecule weight (Cheryan, 1998). Besides,
nanofiltration membranes can remove contaminants as small as 0.001 pm (Taylor & Jacobs,
1996). Reverse osmosis membranes are capable of filtering the particles with a diameter as
small as 0.0001 pm (Taylor & Jacobs, 1996).

The advantages of MBR include process stability, compact operation, high throughput,
and high removal efficiency (Sanguanpak, Chiemchaisri, & Chiemchaisri, 2019). MBR is
thus operationally ideal for municipal wastewater treatment, given the scarcity of space in
urban areas and large daily volumes of municipal wastewater generated by urban resi-
dents. Fig. 22.1 shows the MBR treatment technology, MBR removal mechanisms, and fil-
tration capability of the four classes of membrane filtration.

The micropollutant removal of MBR entails three mechanisms: adsorption, biodegrada-
tion by microorganisms, and membrane filtration (Boonyaroj et al., 2017). The adsorption
efficiency is a function of the octanol—water partition coefficients (K,) of micropollutants.
A micropollutant with high K., is readily adsorbed onto the membrane surface and
microbial sludge, while that with low K, is removed in aqueous form and biodegraded
by microorganisms (Boonyaroj et al., 2017). Meanwhile, the performance of membrane fil-
tration is closely related to membrane pore size. Gurung et al. (2019) investigated the
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FIGURE 22.1 Membrane bioreactor technology and mechanisms and filtration capability of four membrane
classes. Source: Modified from Honda et al. (2012) and Sanguanpak et al. (2019)

removal efficiency of 23 micropollutants in municipal wastewater using pilot-scale MBR
under two solid retention time (SRT) conditions: 60 and 21 days. The micropollutants
under study were pharmaceuticals and steroid hormones. The result showed that the
micropollutant removal efficiency was positively correlated to SRT.

Furthermore, Tadkaew et al. (2011) documented that the determinants of micropollutant
removal efficiency are the hydrophobicity, molecular weight, and chemical structure of
micropollutants. Hydrophobic micropollutants are mostly removed by adsorption.
Meanwhile, the removal efficiency of micropollutant is positively correlated with the
molecular weight of the compound.

In addition, micropollutants can be classified into three groups by function and removal
efficiency: electron-withdrawing (EWG) micropollutants with low removal efficiency;
electron-donating (EDG) micropollutants with high removal efficiency; and EDG/EWG or
EDG micropollutants with low removal efficiency. Fig. 22.2 shows, as an example, the
chemical structure of EWG and EDG micropollutants.

The bacterial species reported in previous research that can degrade micropollutants in
municipal wastewater including Agrobacterium sp. H13-3 (Wu et al., 2011), Pseudomonas sp.
UWB6, Nitrosococcus sp., Nitrosomonas sp., and Nitrospira sp. (Boonnorat et al., 2018;
Fernandez-Fontaina et al., 2012).
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FIGURE 22.2 The chemical structure of EWG and EDG micropollutants. Source: From Tadkaew, N. et al. (2011).
Removal of trace organics by MBR treatment: The role of molecular properties. Water Research. Australia: Elsevier Ltd,
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Reclaimed wastewater is reused for various purposes, including irrigation of gardens
and agricultural fields or replenishing surface water and groundwater. However, evidence
shows that reuse of improperly treated wastewater (i.e., containing micropollutant resi-
dues) could result in stunted crop growth and poor seed germination (Wu et al., 2015). In
addition, concerns exist over translocation of micropollutants to the crops and pose serious
health risks to consumers (Christou et al., 2017; Hurtado et al., 2016; Wu et al., 2015).

Furthermore, certain antibiotic-resistant bacteria remain in effluent treated by conven-
tional biological wastewater treatment systems due to limited capability of the biological
treatment technology in removing the microbes (Christou et al., 2017; Tijani, Fatoba, &
Petrik, 2013). As a result, a more effective wastewater treatment technology, specifically
MBR, should be adopted to treat municipal wastewater to minimize the micropollutant
residues and antibiotic-resistant bacteria in treated wastewater. M. et al. (2020) proposed
MBR with nanofiltration/reverse osmosis system for municipal wastewater reclamation
because of high micropollutant removal efficiency.

MBR was mostly use for municipal wastewater for responsible to water reclamation
and reuse. However, conventional activated sludge-based MBRs pose operational pro-
blems such as membrane fouling, high energy consumption, and limited nutrient removal
capability (Nguyen et al., 2012). One problem of MBR is membrane fouling, which opera-
tors have to clean membrane and it can be the cost in system operation. The development
of MBR to overcome these problems (Nguyen et al., 2015) focused a novel osmotic mem-
brane bioreactor (OsMBR) with the following unique features was developed: (1) osmotic
pressure is used as the driving force instead of hydraulic pressure; (2) forward osmosis
membranes show high rejection for a wide range of contaminants; and (3) the membranes
have a low fouling tendency. Nevertheless, a major technical challenge to OsMBR applica-
tion was the lack of appropriate draw solutions that could reduce salt accumulation and
membrane fouling during long-term operation (Ge et al., 2012; Kim, 2014).

The use of sponge-based moving bed in membrane bioreactor was the one innovation
in wastewater treatment for enhance nutrients removal by nitrification/denitrification and
include reduction of membrane osmotic pressure during operations (Nguyen et al., 2016)
(Fig. 22.3). The innovative concept of combining sponge-based moving based and osmotic
membrane bioreactor (SMB-OsMBR) hybrid system was investigated using Triton X-114
surfactant couple with MgCl2 salt as the draw solution. This solution can reduce salt accu-
mulation, low fouling, and high nutrients removal efficiency.
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FIGURE 22.3 The sponge-based moving based and osmotic membrane bioreactor. Source: From Nguyen, N.C.
et al. (2016). Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw
solution for municipal wastewater treatment. Water Research. Taiwan: Elsevier Ltd, 91, 305—313. https://doi.org/10.1016/].
watres.2016.01.024.

The variation of the water flux and amount of salt accumulation with the operating
duration was examined using synthetic wastewater as the feed solution. The nutrient
removal efficiency was then determined in the SMB-OsMBR hybrid system for the pro-
posed draw solution. Finally, the membrane fouling characteristics were analyzed using
scanning electron microscopy and energy dispersive x-ray spectroscopy (SEM-EDS), and
fluorescence excitation-emission matrix spectrophotometry.

Fig. 22.4 showed most of the microorganisms were attached to the sponge carriers
rather than the membrane, which prevented membrane fouling. Hence, the moderate
decrease in the water flux suggested that membrane fouling in the SMB-OsMBR. The
SMB-OsMBR system was able to remove more nutrients due to the thick-biofilm layer on
sponge carriers. Subsequently less membrane fouling was observed during the wastewater
treatment process. A water flux of 11.38 L/(m” h) and a negligible reverse salt flux were
documented when deionized water served as the feed solution and a mixture of 1.5 M
MgCl, and 1.5 mM Triton X-114 was used as the draw solution. The SMB-OsMBR hybrid
system indicated that a stable water flux of 10.5 L/(m* h) and low salt accumulation were
achieved in a 90-day operation. Moreover, the nutrient removal efficiency of the proposed
system was close to 100%, confirming the effectiveness of simultaneous nitrification and
denitrification in the biofilm layer on sponge carriers. The overall performance of the
SMB-OsMBR hybrid system using MgCl, coupled with Triton X-114 as the draw solution
demonstrates its potential application in wastewater treatment.

In Singapore, NEWater is produced from the secondary effluent of the conventional bio-
logical treatment with membrane technology included microfiltration, reverse osmosis
(RO) followed by UV disinfection. In water treatment system with multistage processes
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FIGURE 22.4 The microorganisms attached to the sponge media and membrane during system operation.
Source: From Nguyen, N.C. et al. (2016). Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system
using a new class of draw solution for municipal wastewater treatment. Water Research. Taiwan: Elsevier Ltd, 91, 305—-313.
https://doi.org/10.1016/j.watres.2016.01.024.

have been criticized due to the high process complexity, intensive energy consumption,
and large footprint (Cornejo, Zhang, & Mihelcic, 2016). In recent years, the integration of
aerobic MBR and RO has been applied for high-grade reclaimed water production from
wastewater in pilot-scale and further progressed to full-scale implementation with the
advantage of process robustness and compact footprint (Lay et al., 2017). However, the
core of these processes is greatly built on the principle of biooxidation, in which COD is
converted to carbon dioxide with a huge amount of excess sludge production, while nitro-
gen is removed through nitrification-denitrification at the expense of high energy con-
sumption. About 50% of the in-plant energy was consumed by aeration for the purpose of
biooxidation (Panepinto et al., 2016), and proper handling of waste sludge produced has
become a great challenge in many countries (Michal, Jacek, & Piotr, 2015). Therefore, the
treatment processes and water reclamation are needed toward improved energy efficiency
and environmental sustainability.
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The anaerobic membrane bioreactor (AnMBR) has received great attention due to the
advantages of high-quality effluent with neglectable solids and short start-up period
(Ozgun et al., 2013). Previously, its application in municipal wastewater treatment was
challenged due to the dilute nature of municipal wastewater (Song et al., 2018). In recent
years, studies have proved the feasibility of AnMBR for municipal wastewater treatment
(Wu et al., 2017). However, it should be noted that AnMBR is ineffective for nutrients
(N, P) removals (Pretel et al., 2016), which require further treatment. In addition, the RO
has been widely used to reclaim municipal wastewater treated with conventional pro-
cesses, while it can remove nutrients from effluent.

Gu et al. (2019) studied the improvement of energy efficiency and sustainability with
process design, treatment performance, energy recovery, and consumption for recommen-
dation the rearrangement of NEWater treatment process. These factors were calculated by
the experimental results and membrane trans pressure between the integrated AnMBR-
RO-IE and NEWater production process. The energy consumption and mass flows of car-
bon and nitrogen of both processes were showed in Fig. 22.5 and the effluent characteris-
tics of integrated process compared to NEWater process was showed in Table 22.1.

This study evaluated the feasibility of an innovative integrated anaerobic membrane
bioreactor—reverse osmosis—ion exchange (AnMBR-RO-IE) process for municipal waste-
water treatment. The objective of this innovation is to upgrade water reclamation with
high energy efficiency and low waste sludge production. In this integrated process, an
AnMBR was employed as the lead for energy recovery through direct COD capture, and
AnMBR effluent was subsequently reclaimed to NEWater-like product through combined
RO and IE. Results showed that nearly 76.8% of influent COD was converted to methane
(CH,) in AnMBR equivalent to 0.41 kWh/m® wastewater treated, while more than 95% of
organic carbon, ammonium, phosphate, major ions, and cations in AnMBR effluent were
rejected by RO after further polishing by IE. The treated water quality appeared to be com-
parable or even better than the typical NEWater quality in Singapore. This study showed
that the integrated AnMBR-RO-IE process could produce NEWater-like product water
with compact footprint, near-zero sludge production, high operation stability, maximized
energy recovery and reduced energy consumption compared to the current process for
NEWater production from municipal wastewater. It is expected that the proposed process
can offer new insights into the direction of future wastewater reclamation.

22.3 A case study of municipal wastewater reclamation and reuse in Thailand

22.3.1 The environmental education and conservation center

The Bang Sue Environmental Education and Conservation Center (EECC) in Thailand’s
capital Bangkok is a two-story administrative building with a submerged municipal waste-
water treatment facility using MBR and membrane filtration. The EECC project is the first
pilot project in Southeast Asia for submerged wastewater treatment system. The facade of
the administrative building facing the park showcases a 100-meter-long curvaceous cas-
cading waterfall. The waterfall utilizes recycled water from the submerged treatment
facility.
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FIGURE 22.5 Energy consumption and mass flows of carbon and nitrogen in (A) the integrated
AnMBR-RO-IE and (B) the present NEWater production process. Source: From Gu, ]. et al. (2019). An innovative
anaerobic MBR-reverse osmosis-ion exchange process for energy-efficient reclamation of municipal wastewater to NEWater-
like product water. Journal of Cleaner Production. Singapore: Elsevier Ltd, 230, 1287—1293. https://doi.org/10.1016/].
jclepro.2019.05.198.

The EECC administrative building also houses the Ecology Conservation Center and a
learning center for indigenous plants and aquatic plants. The aims of the centers are to
increase awareness and educate visitors about the importance of the environment and nat-
ural resources. Surrounding the EECC building is the recreational park irrigated by
reclaimed wastewater from the underground treatment facility. Inside the park is a well-
designed and elaborate nexus of bicycle lanes, paved walkways, and jogging routes.
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TABLE 22.1 Effluent characteristics of integrated process compared to NEWater process.

Parameters (mg/L) After AnMBR After RO After IE NEWater®
NH,*-N 41.90 2.10 <1.00 1.00

PO P 4.41 0.03 0.03 not specific
TOC 3.60 0.13 0.13 0.50

Na 132.70 3.20 3.50—6.60 20.00

K 10.18 0.084 <0.01 not specific
Ca 31.20 0.05 <0.01 1.00

Fe 0.33 <0.005 <0.005 0.04

Cl 157.80 4.70 4.70 20.00
SO, 31.90 0.50 0.50 5.00
Conductivity (uS/cm) 1127.00 47.00 <39.00 100.00

“Information from PUB (2017).

From Gu, |. et al. (2019). An innovative anaerobic MBR-reverse osmosis-ion exchange process for energy-efficient reclamation of municipal
wastewater to NEWater-like product water. Journal of Cleaner Production. Singapore: Elsevier Ltd, 230, 1287—-1293. https://doi.org/10.1016/
j.jclepro.2019.05.198.

The landscaped area of the park, partially covering a treated wastewater reservoir and
linked by wooden boardwalks, is an open water garden showcasing aquatic plants of
diverse botanical varieties. The water garden also provides ample space for sports, out-
door activities, and live musical miniconcerts. The landscape, in the ripple pattern, blends
the facility (i.e., building and underground wastewater treatment plant) and lush urban
environment with human needs (Fig. 22.6).

22.3.2 Srinakharinwirot University, Thailand

Srinakharinwirot University has the opportunity to create cultures of sustainability for
students. Recently, the university enforced the green university policy. The project has
implemented at Ongkharak campus (Nakhon Nayok, Thailand), initialed the treatment of
wastewater from the residential area (e.g., dormitory), and reused in various sectors.
Kalayanamit building is a dormitory for the university’s staff, located in Ongkharak cam-
pus area. This building has eight floors with 64 rooms, 48 single rooms, and 16 family
rooms. The building sanitary separated blackwater from toilet to septic tank while grey-
water from rooms’ showers, hand-wash basins, kitchen, and laundry. This water was col-
lected and taken to the lagoon without treatment.

A demonstration MBR was installed and operated to treat up to 10 m®/day of grey-
water with an HRT of 12 h. Fig. 22.7 and Fig. 22.8 show the schematic diagram of the MBR
pilot plant, which consists of an entrance tank (12 m®), a membrane compartment, an aero-
bic tank, an automatic cleaning system, permeate tank, and several pumps. The membrane
was a PTFE submerged ultrafiltration hollow fiber (UF-HF) membrane module
(POREFLON SPMW-12B6) with a nominal pore size of 0.1 microns Sumitomo Electric
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FIGURE 22.6 The Bang Sue Environmental Education and Conservation Center in the capital Bangkok,
Thailand. Source: From Jarungwit Boonnorat.

FIGURE 22.7 The MBR pilot plant for greywater treatment at Srinakharinwirot University. Source: From
Suthida Theepharaksapan.

Company, Japan. The total membrane area of each membrane was 6 m?, and six mem-
brane units were installed. The pilot plant was equipped with programmable logic control-
ler (PLC) system, the transmembrane pressure (TMP) values, and levels of the reactor
were monitored to regulate all pumps and air blowers.
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FIGURE 22.8 Schematic diagram of the MBR pilot plant. Source: From Suthida Theepharaksapan.

The MBR has been operated to minimize its energy consumption while assuring high-
quality effluent. A regular sampling biweekly was performed for offline analysis at the
inflow and the MBR outflow in terms of chemical water quality parameters. The MBR could
be proven to be efficient in greywater treatment, as shown in Table 22.2. The results indi-
cated that the reclaimed effluent could meet international guidelines/regulations for
nonpotable reuse, save for the presence of the possible microorganism. The tread greywater
has been used for toilet flushing on the first floor of the building. A total of 90 liters of fresh-
water could be saved daily, and the remaining could be used for garden watering with the
high freshwater demands of these daily activities. In addition, the evaluation of long-term
effects of treated greywater reuse on vegetable crop irrigation (i.e., butterhead lettuce and
melon crops) intended for human consumption was performed with an experimental site
near the pilot-plant, as shown in Fig. 22.9. Irrigation water and vegetable samples were col-
lected during the cropping seasons and evaluated for fecal coliform, which did not find
microbial contamination in both samples. The vegetable crops were successfully grown on
treated water supplied plots based on the production and quality components, with no sta-
tistical difference yields compared to plots supplied with fresh water.

This research demonstrated the appropriateness, and the economic feasibility of MBR-
based GW systems in university facilities, offering a good opportunity for a high-quality
alternative water source. However, the latter stage involves justifying the practicality of the
greywater recycling systems through the implementation of engineering tools, such as envi-
ronmental risk assessment (ERA), material flow analysis (MFA), and economic worthiness.

22.3.3 Thailand’s Eastern Economic Corridor

The Eastern Economic Corridor (EEC) is a pilot project for Thailand’s Eastern Seaboard’s
economic development. The project covers three eastern provinces: Chachoengsao, Chonburi,
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TABLE 22.2 Influent and effluent characteristics.

Water samples Guidelines and regulations
Parameters Unit Greywater Effluent USA® Canada® Japan
pH - 70*03 71x04 6—9 - 5.8-8.6
Dissolved Oxygen (DO) mg/L 1.1+05 6.4+1.2 — — —
Biochemical oxygen demand (BODs) mg/L 744+187 07*05 <10 <20 <20
Chemical oxygen demand (COD) mg/L 123.1+332 5.0*6.5 - - -
Suspended solids (SS) mg/L 27.7+113 0.6+*08 - <20 -
Total dissolved solids (TDS) mg/L 289 +90 335 +130 - - -
Ammonium nitrogen (NH;"-N) mg/L 5026 03=x0.7 - - -
Nitrate nitrogen (NO;™-N) mg/L 0201 59x13 - - -
Total phosphorus (TP) mg/L 1.8x0.6 0.7+04 - - -
Total coliform” CFU/100 mL 1.2 X107 346 =314 Not detected — <50
E.coli® CFU/100mL 4.1x10*  Not detected — <200 -

“total plate count (CFU/100 mL).

YGuidelines for unrestricted urban reuse of USA, USEPA (2012).

“water regulation for a toilet and urinal flushing in Canada, Health Canada (2010).
hwater regulation for landscape irrigation in Japan.

FIGURE 22.9 The wastewater treatment and water reuse project at Srinakharinwirot University, Thailand.

Source: From Jarungwit Boonnorat.

Integrated and Hybrid Process Technology for Water and Wastewater Treatment



22.3 A case study of municipal wastewater reclamation and reuse in Thailand 529

and Rayong provinces, with approximately 13,000 km?. The EEC will serve as a hub of
trade and investment, a center of regional transportation and logistics, and a gateway to
Southeast Asia. The rising demand for water in the EEC area, which is forecast to reach
3.09 billion cubic meters in 2037, will lead to conflicts and confrontations over limited
resources. Environmental agencies have warned that the conflicts might spill over to nearby
provinces, as the Eastern Economic Corridor Office (EECO) seeks more water resources. This
comes when many parts of Thailand are suffering from a drop in rainfall due to climate
change. Wastewater treatment for water reuse (circular economy) is a solution to mitigate
problems that may have an impact as a guideline for sustainable water and wastewater
management.

Several industrial estates are located in the EEC development zone, including Map Ta
Phut Industrial Estate and Laem Chabang Industrial Estate, which is the country’s largest
industrial port. The wastewater management in the industrial estates emphasizes the
reduction of wastewater at point sources via online monitoring, in addition to a permit
system for pollutant loading. The pollution control agency is also updating the standards
of treated wastewater to minimize discharge of substandard treated wastewater into natu-
ral waterways.

In municipal wastewater management, the three provinces in the EEC development
zone have adopted an action plan with four key goals: (1) wastewater reduction at point
sources; (2) public participation; (3) effective law enforcement; and (4) renovation and con-
struction of wastewater treatment facilities with an emphasis on water reclamation and
reuse.

The vast amount of wastewater discharge and low reclaimed water production means
that wastewater reuse still has a great potential in the EEC area. In 2020, there are 13
wastewater treatment systems in the EEC area, with 9 in Chonburi Province,
Chachoengsao Province, and 2 in Rayong Province with a total treatment capacity of
221,780 m”/day, as shown in Table 22.3. The technologies mostly used in wastewater treat-
ment systems are AS and oxidation ditch, which account for over 50% of the existing
wastewater treatment systems.

According to statistics from the Environment Agency Region 13 (Chonburi), the
estimated amount of wastewater in Chonburi Province is 230,317 m®/day (base on the
wastewater production rate of 150 liters/person/day), Rayong Province and
Chachoengsao Province are 107,251, and 108,497 m®/day, respectively. On the other
hand, Chonburi Province have an average treatment rate of 70% of the municipal
wastewater (160,829 m®/day) while Chachoengsao and Rayong provinces have an
average treatment rate of 16% and 2.5% of municipal wastewater for treatment
(17,124 and 2687 m3/day). The major difference in treatment rates across the country
may be due to the wastewater network connection, which was a total of 42% of total
wastewater.

Approximately 80% of the water consumed in the urban area ends up in the wastewater
stream and 70% of which may be reclaimed if the wastewater is collected and treated. If
the reclaimed water is fully utilized, the available water supply will increase by 56%. In
the literature, it is a promising source of stable and reliable water supply. It could resolve
50% plus of the urban water shortages if on the average 20% of reclaimed water is used
nationwide (Zhou, 2006).
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TABLE 22.3 Characteristics of municipal wastewater treatment systems in the Eastern Economic Corridor
(EEC) area.

Capacity Wastewater Year of
Administrative area Types (m®day) inflow (m*/day) operation
EEC Area 221,780 180,640
Chonburi Province 169,780 160,829
Chonburi Provincial Administrative AS 22,500 7,605 2001
Organization
Pattaya City (Soi Wat Nong Yai) AS 65,000 75,570 2000
Pattaya City (Wat Bun Kanjanaram) AS (SBR) 23,000 23,000 1994
Laem Chabang City Municipality AL 7,500 1,000 2009
Phanat Nikhom Municipality SP 5,380 24,000 1997/2019
Saen Suk Municipality (North) AS (OD) 14,000 10,353 1994
Saen Suk Municipality (South) AS (OD) 9,000 5,522 1994
Sriracha Municipality AS (OD) 18,000 9,779 1997
Bang Saray Subdistrict Municipality AL 5,400 4,000 2011
Chachoengsao Province 29,000 17,124
Chachoengsao Municipality AS (OD) 24,000 15,124 1998/2005
Bang Khla Subdistrict Municipality SP 5,000 2,000 2008
Rayong Province 23,000 2,687
Map Ta Phut Municipality AL 15,000 1,764 2001
Ban Phe Municipality AS (OD) 8,000 923 1998/2013

Operation year: phasel/phase2.
AL, Aerated lagoon; AS, activated sludge; OD, oxidation ditch; SBR, sequencing batch reactor; SP, stabilization pond.
From Environment Agency Region 13 (Chonburi), 2019.

22.4 Nutrients recovery by microalgae in municipal wastewater treatment

Municipal wastewater normally contains high concentrations of nitrogen and phospho-
rus. Nitrogen and phosphorus in household wastewater come from human waste and
personal care and cleaning products (Beler-Baykal, Allar, & Bayram, 2011). The nutrients
(i.e., nitrogen and phosphorus) in wastewater can be harvested and used to fertilize agri-
cultural crops (J.R. et al., 2017). However, conventional municipal wastewater treatment
systems, for example, AS, are less effective in removing nitrogen and phosphorus in
wastewater, resulting in high concentrations of the nutrients in treated wastewater (Honda
et al., 2012).

As a result, microalgae cultivation is employed to remove and recover the nutrients in
municipal wastewater. The nutrient recovery efficiency varies by microalgae species, effluent
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characteristics, and environmental conditions. In addition, microalgae can be used for removal
of several micropollutants such as hormones (Ruksrithong & Phattarapattamawong, 2019),
pharmaceuticals (de Wilt et al., 2016; Escapa et al., 2016), and antibiotics (Leng et al., 2020).
The recovered microalgae can be used as fertilizers, animal feed, and raw materials for cos-
metic products and biofuels (Mehta et al., 2015). Table 22.4 summarizes previous research on
microalgae-based recovery of nutrients in municipal wastewater and the reference number 1
denotes (Li et al., 2019), 2 denotes (Naaz et al., 2019), 3 denotes (Rani et al., 2019), 4 denotes
(Tao et al., 2017), and 5 denotes (Gao et al., 2014).

The advantages of microalgae-based nutrient recovery include: (1) the recovered micro-
algae can be used as the raw material for biofuel production (Roostaei & Zhang, 2017); (2)
the energy consumption is considerably lower, vis-a-vis the AS technology (Fernandez,
Gomez-Serrano, & Fernandez-Sevvila, 2018); (3) unlike the AS system in which nitrogen
and phosphorus dissipate into the atmosphere, the nutrients are recovered and deposited
in biomass under the microalgae-based nutrient recovery scheme (Fernandez, Gomez-
Serrano, & Fernandez-Sevvila, 2018); (4) atmospheric carbon dioxide (CO,) captured and
oxygen (O,) generated during microalgae photosynthesis help mitigate the effects of global
warming (Honda et al., 2012); and (5) microalgae biomass can be used for animal feed and
biofuel (Catarina et al., 2019; Sofie et al., 2016).

TABLE 22.4 Summary of existing research on microalgae-based recovery of nutrients in municipal
wastewater.

Effluent characteristics or

Wastewater characteristics Microalgae treatment efficiency (%) References
BOD 112 mg/L, NH,*-N Galdieria sulphuraria BOD 30 mg/L, NH,"-N (Li et al., 2019)
22.7-29.2 mg/L, PO,>” 2.1-3.9 mg/L 19.5-19.9 mg/L, PO~

<lmg/L
COD 153.7 = 6.0 mg/L, NH,*-N PA6 Phormidium COD 53%, NH,"-N 81%, (Naaz et al., 2019)
27.3*+2.01 mg/L, NO; -N and Chliorella NO; -N 81%, TP 75%

11.16 £ 0.75mg/L, TP 21 £ 0.5 mg/L pyrenoidosa

COD 250 =20 mg/L, BOD 35 =2 mg/L, Chlorella sorokiniana COD 17—47%, BOD 60—80%, (Rani et al., 2019)
NO;-N 2.5 mg/L, PO,>~ 3.4 NO;™-N 53-96%, PO,>~
59-92%

COD 21.26 + 4.84 mg/L, total nitrogen  Chlorella vulgaris Nitrogen 61%, Phosphorus (Tao et al., 2017)
(TN) 16.43 = 3.12 mg/L, total 71%
phosphorus (TP) 3.25 = 0.71 mg/L

COD 55.6 +10.9 mg/L, NH,*-N Chlorella vulgaris Nitrogen 56%, Phosphorus (Gao et al., 2014)
11.26 £ 0.82 mg/L, NO; -N 82%

7.06 £ 0.56 mg/L, NO, -N

0.15 +0.03 mg/L, total nitrogen (TN)

19.12 = 0.52 mg/L, total phosphorus

(TP) 1.24 £0.12mg/L
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22.5 Conclusion

In view of the UN’s SDG 6 on clean water and sanitation that aims to ensure availability
and sustainable management of water and sanitation for all, this article investigates the
current municipal wastewater treatment technology and water reclamation and reuse. The
wastewater treatment technology under study is MBR since the technology is operation-
ally ideal for removal of micropollutants in municipal wastewater, especially in urban
areas where space is scarce. In addition, MBR is effective in removing biodegradation-
resistant micropollutants, with high daily throughput of treated wastewater. The MBR
effluent can also be reused to irrigate agricultural crops due to low micropollutant resi-
dues. However, in areas where municipal wastewater is predominantly treated by conven-
tional biological AS systems, high concentrations of nitrogen and phosphorus that remain
in treated wastewater can be further removed and recovered by microalgae cultivation.
The recovered microalgae can be used as fertilizers, animal feed, and raw materials for
cosmetic products and biofuels. Essentially, to attain goal 6 of the UN’s SDGs on clean
water and sanitation for all, collaboration among stakeholders, that is, both public and pri-
vate sectors, is of vital importance.
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